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We study the numerical solution of a hyperbolic system arising from the following physical 
problem: the interaction of a beam of particles and a plasma, both being described by a fluid 
model, which are coupled by the Poisson equation. The equations are solved by Lagrangian- 
Eulerian anti-diffusive techniques, combined with an antidiffused version of the Lax-Friedrichs 
scheme, in a one-dimensional semi-infinite system. This allows the use of Courant numbers 
well above one. An imposed boundary condition for the beam injection allows beam front and 
neutralisation effects to be described suitably. The main physical applicaton (as one is 
concerned with beam radiation) is the observaton of the saturation of the wave emission by 
trapping the beam in the wave it excites. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

The present problem is a special case of the general beam/plasma interaction, this 
case being aimed to the study of the radiation (electromagnetic and electrostatic) of 
a density modulated beam injected in a plasma. The idea of a beam antenna in this 
context has been already put forward (see [l-3]). A natural antenna occurs, in the 
same sense, in the very low frequency range with ionospheric whistlers in space 
(see [4]). The use of a beam as an antenna could be a very powerful tool in active 
experiments in, the ionosphere and magnetosphere in triggering wave-particle 
interactions. We restrict ourselves to a one-dimensional problem to try to 
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investigate the nonlinear phenomena responsible for saturation of the waves 
emitted by -the beam. 

Of course, in a one-dimensional model, wave emission is merely electrostatic: 
only the unneutralized part of the beam can radiate. Mechanisms of saturation are 
numerous, however, even in this simple case: trapping of the beam particles in their 
own neutralization waves, or demodulation of the beam density, or even global 
beam velocity braking. We actually find the “classical” beam trapping effect as a 
saturation mechanism which is a priori by no mean obvious. A three-dimensional 
simulation would be excessively complex to undertake for the same purpose. 

2. LINEAR THEORY 

We choose a fluid model for both plasma and beam particles. The main 
drawbacks of a fluid model should, however, be underlined at once: we neglect all 
velocity dispersion effects though they are important for wave emission, and wave 
discrimination will become problematical since the fluid electric field represents all 
the possible existing fields (wave field and unneutralized space charge field as well), 

We are left with the following equations: 
for the beam, 

for the electron plasma, 

with the Poisson equation, 

aE 
Eo~=“bnb+~ini+~,n, 

In these equations, nb, n,, and n, are respectively the beam, electron, and ion 
plasma densities; vb and v, are the fluid velocities of the beam and of the electron 
plasma. The electric charges are denoted by rb, re, and I, and the masses by mb 
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and m,, respectively. The electric field is denoted by E, the electronic pressure by P, 
and the vacuum dielectric constant by E. We define the two constants 

zb 
6tb =--; 

mb 

Equations (1) and (3) are the density continuity equations. Equations (2) and (4) 
are the equations of motion. The ions will be taken as an immobile neutralizing 
background. Since Zi = -r,, (5) may be rewritten as 

where nz = ni = constant. 
Note that for an electron beam, r, and rb are both negative, n, and nb are always 

positive, but @ - n, can have either sign. The velocity ab will be positive, and U, can 
have locally either sign. 

Equation (2), and also (4) when P, = 0, are known as Burgers diffusionless 
equation (see [9]). They are coupled linearly by their right-hand side term with the 
Poisson equation and Eqs. (1) and (3). A conservation form may be given to (2) 
and (4) by introducing the momenta &, = nbub, qe = n,v,. 

We get the system 

aqb a 
dt + z (qb”b) = BbnbE 

and 

(1.2) 

(1.4) 

with E given by (1.5) or (5). 
This system is a basic set to be completed by a boundary condition for the beam 

injection at x = 0. The positive quantities n,(O, t) and t&(0, t) are given for all t > 0, 
in a “forced regime:’ of continuous injection. We also need to close the equations by 
an equation of state for P,. The simplest one is the adiabatic approximation to be 
taken here as 

P, = V&m,n,5/6, 
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where 

with Vthe denoting the thermal velocity, 6 the adiabatic constant, k, the Boltzmann 
constant, and T, the electron temperature. For small perturbations we can linearize 

P, = V$men,. 

In the case of a nonconstant T,, an additional heat equation should be written 
for it. 

Introducing the Fourier Laplace transform one can examine the linear part of the 
basic set of equations. 

For electrostatic perturbations, E = -@,, @ being the electrostatic potential, 
hence we are led to the equation with uniform beam, nb = Cte: 

k2q,G(k, w) E(k, w) = - Zbnbvb 
w(w - kv,) 

and 

where 1, = zbnbvb is the beam current, and E(k, w) is the dielectric constant 
involving the well-known four normal modes and two plasma modes, one being a 
slow one, the other a quicker one. These modes are usefui since they will trace t 
motion of waves on the characteristics used in the numerical session. We have 

e(k, w) = 1 - w2 :b2 v 
2 

- o,pb 
,‘, (w L kv,J2 

with 

02 = n”T2 L-2, 
pe rn& 

W ;b - hZE 
e 0 mbEO 

For a 100% density modulated beam, we have 

12,(x, t)=nO,[l +sin(Q(t-x/ub))] (91 

with a modulation frequency Q, and, instead of (6) (see [2-J), we formally set 

cok2d(k, w) @(k, w) = ~ - -- 

where E’ fe is an unknown operator because of the strong density beam 
modulation. If it were known, the problem could be solved analytically. 
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For a modulated beam as given by (13), there is no simple stability analysis like 
the one yielding relation (8) but we expect suppression or control of the instability 
by the modulation (see [4]). 

We can now introduce neutralization effects on the uniform beam model: 
neutralization means a reaction of the plasma which tends to cancel the charges z 
(electric charge neutralization) and current Ib (current neutralization) brought in 
by the beam. If the neutralization were total, then only the front of the beam would 
be emissive and the level of radiated waves would be very weak. But as the beam is 
modulated, the plasma will not necessarily cancel the perturbations r and I 
anywhere in x at any given time t, and we expect a nonzero wave electric field to be 
created. Actually, one has a secularly diverging field if one sticks to the previous 
linear analysis because of the degeneracy of the frequency poles Q = mpe in the 
Laplace inversion; this is not due to the instability. The field associated with 
neutralization (and emission) effects will be stationary in the beam reference frame 
and will appear at the B frequency as seen by the plasma electrons. 

Note also the existence of a pole at w = 0 in (7), associated with the neutraliza- 
tion of the static beam space charge. There is a difficulty with energy conservation, 
the medium becoming inhomogeneous with the beam penetration. To ensure 
conservation one needs two time scales: a fast time scale associated with the high 
frequency wave at 0, and a slow time scale associated with the static field at w = 0. 

Here the net charge injected by the beam should be locally compensated by the 
plasma. One should also notice the two signs, from (8), 

of the waves associated with plasma modes. This is important for the application of 
methods involving characteristics to be defined in the following section. 

We conclude this section by emphasizing the originality of the present simulation 
using a semi-infinite model instead of methods based on the Vlasov or fluid 
equations written for cyclic boundary conditions with already prescribed injected 
particles that do not allow the description of front effects. 

3. THE NUMERICAL PROCEDURE 

The velocity a, is often close to the thermal velocity V,, in practice, and both are 
far less than the beam velocity zli, : zl,, 9 u, ; ai, B V,,. 

Thus the use of the same explicit scheme with a Courant-Friedrichs-Lewy (CFL) 
stability condition will give bad results for the thermal electrons advection. As a 
matter of fact, if the time increment At is imposed by the faster velocity ub, it 
becomes too small for the slower one, and too small a At leads to a large amount of 
numerical diffusion. So we shall use two different mehods, suited for each velocity. 
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‘We take an explicit scheme with a CFL stability condition fo the electrons advec- 
tion, and a combination of Lagrangian and Eulerian techniques for the beam. 
call it a Lagrange-Euler technique. This last method allows a At which can be far 
larger than the one imposed by a CFL condition. Hence the time increment will be 
fixed by the scheme used to compute the slow electrons advection. In order to 
reduce diffusion effects, the CFL number will be choosen close to unity for this 
scheme. Moreover, an antidiffusion technique of the flux-corrected-transport (FCT) 
type will be performed at each step. Such methods are analysed in [6-91. 

3.1. Beam Advection 

This section is devoted to a Lagrangian technique adapted to t 
advection. It may be broken into three steps. The first one is a transport during a 
time step At, combined wih a projection (i.e., averaging) on a Lagrangian mesh. 
The second step involves a new projection from this mesh to a fixed Eulerian grid. 
Next, an antidiffusive FCT step is performed, with a correction which preserves 
stability properties. In this way the numerical diffusion, resulting mainly from the 
double projection, is reduced efficiently. Next, we introduce the term corresponding 
to the effect of the electric field during the same time At. 

The computation of the beam advection is the same as approximating % 
equations 

-gnb+;(n,cb!=O, 
a a v; 
atUbfax 2 0 

= 0. 

for a time step At, since E will be introduced later. The second equation (11) is the 
well-known diffusionless Burgers equation, and we are looking for the weak 
solution satisfying the entropy condition (see [S-j). As a matter of fact v,, may be 
discontinuous for nonincreasing initial data. Note that the monotone behavior 
may be lost by the effects of the electric field. The first equation (IO) described the 
conservation of the density nb which is transported by the velocity field vb. The 
system (lo), (11) is not strictly hyperbolic since it involves the double eigenvalue 
rb. The beam density flux across a characteristic is zero from (IO). However, two 
characteristics can meet one another along a curve of discontinuity of the 
velocity. Then a part of the beam density will be concentrated along shock 
trajectories. Thus, singularities of the Dirac type appear along these curves. This 
raises a new difficulty, which is to give a sense to the product of distributions ni,ub, 
and to have a numerical scheme able to approximate such a product We can 
rid of it by introducing a function N such that N, = nb. Then N is a boun 
increasing function and satisfies 

;N+v,&N=g(t), 
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where g is a known function depending on the boundary conditions. Namely, 

The values of N are easily computed along the characteristics, along shock trajec- 
tories by considering that the characteristics are fixed to the shock curve after they 
meet it. These values are obtained by solving the differential equation 

; Wx(t), t) = g(t), 

along the characteristics of equation x = x(t), with 

The position at the time t-At of a particle located at x at the time t is 
x-At v,(x, t). Then we get 

W, t) = N(x - At vb(x, t), t-At) + Jr;At g(s) ds. (13) 

The formula (13) will be used in place of (lo), since it allows one to give a meaning 
to N during a whole time step. Next we get nb by computing the derivative N,. 
A mass concentration on a shock trajectory corresponds to a jump of N. 

Let h (= Ax) be the space mesh size. We define the two families of cells for any 
integer i, Jj= (ih, (i+ 1)/z); Ii= ((i-~$)h, (i+ 4)/z). 

For the time discretization, we introduce an increasing sequence {t,}, with t, = 0, 
and we define r, = (t, - t, _ I )/h. The sequence { rn > is supposed to be bounded. For 
simplicity, the boundary data are constant on each time interval (t,- r, t,). The 
initial conditions are assumed to be constant on any cell Ji, for any integer i 3 0. 

We now construct a step of the Lagrange-Euler technique. Let y1> 1; we suppose 
that the approximate solution n;- r(x, t,- r), v;- r(x, t, _ r) are known for any x 2 0, 
and a constant on any cell Ji, where the values are denoted by n;,; l and $7 r , 
respectively. We also set 

q21 = &Jo, t,- I), v;,--‘1 = v,(O, t, - 11, 

to take the boundary conditions into account. Then we build the sequence {x:>, for 
i>O, by 

x~=(i+$)h+~~,~~r,h. 

This is an increasing sequence if, for any i> 1, 

1 + 2r,(v54 l - v;,; 1 ) 2 0. 

(14) 

(15) 
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‘i-l/Z ’ 1+1/Z ‘if3/2 

FIG. 1. The Lagrangian grid. 

If x;;>o, we set x”r= 0. Condition (15) looks like a stability condition, which is 
never stringent in practice. Moreover, it is weaker than the CFL condition, and the 
scheme may be also extended to work without any condition. This is shown in 
Figs. 1 and 2, by performing a new numeration of the x1 when some cell collapses. 
Thus we have constructed the Lagrangian cells Z; = (x;_ 1, x;). 

Let u;: be the solution of ( 11) for 0 < x < cc and t,- I < t < t,, computed from the 
starting values u;- l, and the prescribed boundary data. We can compute its 
averaged value on each Lagrangian cell Z:. We get, for i > 1, 

t 
xx+ 1 

IL+1 p-1/2 

X p-112 X p+1/2 X q- 112 X q+1/2 

FIG. 2. Crossing of characteristics, to be jumped. 
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and for i = 0, 

(1 +r,hv&‘) v”&= (1 +r,hv@) ~~,~‘+r,h(u”,,~~~)~. 

Now we compute 

NY-l=; .i (n”b&+n;,ji)h 
J=o 

(17) 

with nS,ll’, prescribed by the boundary data. From (13) we set, for i> 0, 

Iv;=lv-‘+g(t,-,)At 

on I;. We can now define a value for rZ”,,i, namely 

(l+r,h(v~,~‘-~~,~~,))n”~,~=$(n~,~’+n~,~~,) 

by differencing the N;, for i b 1, and 

(18) 

(1 + rn hv;,; ‘) fi;,o = n&, l - 2r, v;,-l, n;,-_i (19) 

for i = 0. Then we have computed two functions, fit and v”;, defined on the 
Lagrangian mesh. They approximate yli, and vi, at t = t,. Note that the introduction 
of N was very useful to define a scheme for the values of n;,i; these values are 
directly computed from (18) and (19), in practice. 

Next these two functions are averaged on the Euler mesh. This is very easy to 
perform and exactly computed since they are constant piecewise functions. The 
averaged values are denoted n;,i and v;,~, respectively. 

After these two steps, in order to get better results, an antidiffusion step is 
performed. It may be the following one, whose properties are analysed in [6]. We 
set 

A; = (og,i- Vt,i- I)/22 s; = sign(A;), 

a~=~~Max(O,min(s;A~_,,s~A;+,, 14;1/2)), (20) 

V;, i = vg, i - a;, 1 +a;. 

which gives the antidiffused values 5;: i. The same process is adapted to the densities 
and builds the antidiffused values Eci. Other techniques analogues to (20) may be 
found in [8]. Note that the two averages on Ji and the two antidiffusion steps are 
performed by the same subroutines, for the velocities and for the densities. 

So far we have constructed the following scheme. First the Lagrangian mesh is 
computed by (14), under the condition (15). Then the averaged values v;: i and n;,, 
are computed by (16), (17) and (18), (19), respectively. Next a new averaging step, 
on the Euler mesh, is performed. This is followed by the antidiffusion step (20). In 
practice, the computation is performed on a finite interval (0, R). Since v,, is never 
negative, no boundary condition is given at x = R. 



NONLINEAR BEAM PLASMA INTERACTION 

3.2. The Antidiffused Lax-Friedrichs Scheme 

For the advective part of the plasma equation (3), (4), it is possible to use the 
previous method, mainly for P, = 0. But another solution can be used for a nonzero 
T,: an explicit first order algorithm well suited for hyperbolic problems, stable 
under the classical CFL stability condition. This can be done by using the Godunov 
scheme, since Riemann solvers are easy to do, for a constant Y4”,. However, the well- 
known Lax-Friedrichs scheme gives ultimately better results provided that an 
antidiffused correction is performed. The one described in (20) can be used here 
also. The accuracy of this method is similar to the results obtained by the God~nov 
scheme. Moreover, this scheme, with the antidiffusion step, needs less CPU time 
and is far easier to program. 

To fulfill the CFL condition is not very stringent, since both thermal and electron 
plasma velocities are far smaller than the beam velocity in practice. However, a 
difficulty appears in dealing properly with the boundary cells. Thus we shall use an 
antidiffused version of Lax-Friedrichs on any cell Ji, but on the boundary cells, a 
Godunov technique is employed. 

We are concerned with the conservation laws (1.3), (1.4), where 

p,= CK3d12w%. 

As in the previous section, we first study the homogeneous equation, i.e., when E 
is set to zero, for a time step. We use the same meshes as before. The algorithm also 
has three steps. By starting with approximate values of n, and qe constant on any 
cell Ji, we use the exact solution of (1.3), (1.4) from t,- 1 to t,-, + r,h/2, and 
average it on any Ii. The second step is similar to the first one. By starting with 
these averaged values, the solution is computed from t,_ r + r,h/2 to t, and 
averaged one more time on the cells Ji. The third step involves antidiffusion as in 
(20) on n, and qe. We get, successively, 

as the averaged values on Ii, with 

F;- 1 = (q;,; 1)2/n;,; ’ + ( V,,)2 nZf,; 1 

for the first step. The boundary cells will be considered later. Then we compute the 
averaged values on Ji, 

4L$ = (4$+ 4E,i+ ,)/2 - r,(F;+ 1 - F:)/2 

581/79/Z-5 
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with Fy defined as in (23), for the second step. The last step consists in using the 
antidiffusion process described in (20) on the values 

ii; i and g;,,, 

to get the values N$ and q;,i. 
Handling the boundary conditions is more delicate, and we use the Godunov 

scheme in the boundary cells. In order to write this scheme, we have to solve the 
Riemann problem associated with (3), (4), with E=O. The Riemann invariants 
have the form 

where q. is some constant; see Fig. 3. For an absorbing condition, we can set the 
inward Riemann invariant to a constant. This is the same as writing, at x = 0, 

(27) 

and at x= R, 

(28) 

for some given constants K, and K2, and if 

(29) 

c + V,, Ln(n)) 

n 

FIG. 3. Riemann invariant curves in the (q, n) plane. 
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The total length R = Lh is taken large enough to avoid any perturbation of the 
physical phenomena under study. 

For ICLI > n, VadT the two conditions (27) and (28) are to be prescribed at x = 
and no condition is given at x = R. As a matter of fact, this never occurs in practice. 

For reflexion conditions, we set qe = 0 on the boundaries. Then a wave reaching 
the point x = 0 with a velocity - Vad, reflects with the velocity i- Vad. We have t 
reverse at x = R. 

Let us consider the bounded convex set 

14l + Vadn lo&) B K PO? 
for some constant K such that (30) is true for the initial and boundary conditions. 
Then the values of the approximate solution still belong to this bounded set after 
the two first steps (21) (22) and (24), (25). Thus nonlinear stability is ensured for 
this scheme. 

3.3. The Poisson Equation 

This equation can be integrated now. The forward boundary condition is given 
by causality, for there is no electric field ahead of the front of the beam. Thus we 
have 

E(x, t,) = 0 

for x > xk, with XL such that 

We get the values 

and it remains to do 

and 

q$=“‘= r,h~,E~n~,i + q:,I”ld). WB 

from the values computed in Sections 3.1 and 3.2. More accurate methods, such as 
Gear techniques may be also used to introduce this term. 

From a theoretical point of view, we have the following estimates. The densities 
n,, and n, are positive and mass conservation holds. Thus E is still bounded. We 
deduce that the velocities vb and u, cannot increase faster than clb t Max( jE(). In the 
same way, qe=neve remains bounded, and by (30), the approximate solution 
(n,, q8) is valued in a bounded convex set, whose size is growing like 
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Kcl,,t Max(JE(), with t >O; see [S]. From these remarks, we get a linearly 
increasing estimate for the total energy W, with respect to the time t. 

This energy W is defined as the sum 

w= wb+ we+ w,, 

with the beam kinetic energy 

w, = m,n,v;/2, 

the plasma kinetic energy 

We = m,n,vz/2, 

and the fluid electrostatic field energy 

W, = .so E2/2. 

We set 

by denoting the derivative of the adiabatic compressional energy with the plasma 
pressure P,. Then we get the equation of energy conservation, 

g+&(w&+ W,v,)+T=O. 

The numerical results and the previous estimates on the scheme have checked 
this conservation of energy. The preliminary tests also have shown the very good 
producibility of severely imposed discontinuities, such as shocks. This is mainly due 
to the use of antidiffusive phases. As a matter of fact, the use of a Lax-Friedrichs 
scheme without antidiffusion gives very damped results, which vanish rapidly; such 
experiments are reported in [lo]. 

Indeed the Lagrangian technique in Section 3.1 corresponds to the projection of 
a particle method on a cell moving with the beam. The main merit of this projec- 
tion consists in avoiding an expensive handling of the particle collisions, since the 
number of involved particles could be large. We mention that no pressure term 
arises in (ll), which allows strong concentrations of particles at some points. Here 
we can get rid of the collapse of the Lagrangian cells and get an easier computation 
of the forthcoming interaction of the fast electrons with the slow ones, by 
performing one more projection on the fixed mesh. This projection induces exactly 
the same numerical diffusion as the Lax-Friedrichs scheme. 

Now, since the same antidiffusion procedure can be used, we have chosen the 
Lax-Friedrichs scheme for computation of the slow electrons. The Lax-Friedrichs 



NONLINEARBEAMPLASMAINTERACTION 311 

scheme, with the antidiffusion procedure has been compared in [lS] with the 
Godunov scheme with corrected flux (as in [9]). It has been checked that results 
of similar quality have been obtained with a much less CPU time for the 
Lax-Friedrichs scheme. Really the Godunov scheme reqires the use of a Riemann 
solver at the two edges of each cell, which is rather expensive. 

4. NUMERICAL RESULTS 

We write the normalized equations, ,and thus find the independent parameter of 
the system. These are the velocity ratio 

b, = WV”,, 

the density ratio 

and the frequency detuning, 

In fact, for the classical beam plasma instability, 6, = 0, and the only scaling 
parameter is the O’Neil parameter (see [ ll-13]), S defined by 

if b, #O, if b,=O. 

The grid parameters also have to be chosen: Ax = h, and At = r,h. All lengths are 
normalized to the convective wave length, il = v: T at t = 0, and the time to the 
plasma period T = 2n/w,, . 

As a first test, we try a simulation without plasma, and for a uniform beam 
n,(O, t) = ng. Figure 4 shows the results of a typical run, where we have plotted the 
wave energy wp which reduces to the beam potential energy into a vacuum as a 
function of time. We are thus able to check something like the energy equipartition 
principle (see the Appendix) in this case, since 

at most. Here W, is the beam kinetic energy injected at time t and used as a 
normalization factor on W,. 

We have 

s 

f 
W, = $rnb n,(O, t) v,(O, t)3 dt. 

0 
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FIG. 4. Energy test on beam alone (no plasma). Beam potential energy WP normalized to beam 
injected kinetic energy W,,(t) versus time. 

For the saturation value of I+‘,, all the beam is reflected by its own potential 
barrier, which remains unneutralized (apart from a weak “tunneling effect”). 

In the presence of a plasma, bl could not be chosen arbitrarily large. The flow 
can become quickly multivalued in velocities for too strong a b,. Then the fluid 
equations no more hold, and a Vlasov equation is necessary to describe the velocity 
distribution. As a matter of fact, b, is less than 0.1 in practice, which justifies the 
arguments used for the choice of the numerical schemes. 

Figures 5 to 7 show the result of a run without any electronic pressure. We set 
T, = 0, then b, = 0, and b2 = 10e3, h = A/16, r, = 0.5; then At = T/32. 

The left boundary conditions are 

n,(O, t) = nE[l + sin(Qt/vi)], t&(0, t) = u; 

with Q = wPP, thus 6, = 0. 
No significant variation of data by detuning the frequency or by changing the 

initial phase in n,(O, t), has been found. 
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t 
n, '"b 0 

FIG. 5. Electric field versus space for a typical run (see text); n = 1000 time steps (27.6 T), 
normalized to E,, = l/(.@). 

FIG. 6. Beam density versus space, n = loo0 
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FIG. 7. Beam velocity versus space, n = 1000. 

All results have been shown as functions of the spatial dimension m dx, at time 
t, = n dt, with n = 1000. But, in fact, an instability has occurred in the Burgers 
equation at n = 706, and we have chosen to divide r by 2 to ensure stability again. 
The true time was near 27.6 plasma periods. Figure 5 shows the electric field 
normalized to the “coherent front” beam emission field (see [14]), 

E&. 
0 

The quasi-symmetric oscillation at a constant frequency Q = wPP of E is obvious. 
The maximum E amplitude occurs at low x (near the injecton point) because of the 
space charge effects. 

Figure 6 shows the beam density nb(x, 1)/n,. O Notice the good quality of the 
shock front; physically we can expect a demodulation or rather a keeping of the 
oscillating pattern of n,, between 0 and 2n,. O But the regions of strong electric field 
lead possibly to “cavitation” like structures, where plasma density is expelled and 
can reinforce beam density causing IZ~ values larger than 2nE. Also discontinuities 
near the shock front could be responsible for these high values of nb. 

Figure 7 shows the fluid velocity normalized to v:. It oscillates weakly in an 
anharmonic way and if one takes the average of the kinetic beam energy n,vE, we 
found that only a small fraction of it (typically less than 1%) could be transferred 
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to waves. But the velocity oscillates in such a way that it looks like trapping in the 
electrostatic field. Indeed, the trapping period is T* = 27c/o*, where 

is the bounce frequency, k being the local wave number. The E-II2 period 
dependence is roughly checked using Fig. 5, and a focusing effect of Figs. 5 and 7. 

Of course, the trend of the formation of “vortex” like structure in the “fluid” 
space cannot lead to the usual trapping image and interpretation of plasma kinetic 
theory. Nevertheless, we can argue only here towards a trend to trapping, for if one 
takes a convective picture, x’ = vb t gives v(t) as an oscillating function able to 
execute closed orbits in “true” phase space (x, v). 

We can conclude here that the beam emission level is governed by a mechanism 
of beam trapping in the developed electric field. 

APPENDIX 

It may be useful to split the energy into several parts, at least theoretically. The 
energy can be normalized to the total beam kinetic energy injected at time t, defined 
by w,,(t), whereas the beam kinetic energy in the system is given by 

W;(t) =y joL nb(x, t) %(& t12 dx, 

which we expect is at most equal to WF(t). The total beam energy in the system is 
the sum of its kinetic and potential energies, 

w=w;+w,. 

If we are in a vacuum with no external neutralization at all, we can easily 
compute W,f from the Poisson equation 

We get 

i a E= --_ 
s 

L P(G t> dz 
47CEOaxojEJ . 

This allows us to get the equipartition of the energy 

w,= I 
L co -E’dx= 
0 2 

~joLP(x,t)(joL~dq.)d~. 
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Here, we have used the expression for the energy density p@/2, instead of E~E~/~, 
where @ is the electric potential defined by E = -CD,. 

When the beam is injected into the plasma, the Wi modulus is less than the value 
above, because of neutralization effects. It can be zero in case of perfect neutraliza- 
tion. It has an intermediate value in reality, difficult to predict other than 
numerically. Rough estimations could be done using the Debye screening effect, and 
considerations on the front of the beam can be done too; see [14]. 

So the global energy conservation is easy to test but it is difficult to have local 
details on the electric field in the fluid model because everywhere 

and we only know globally that the beam kinetic energy could be transferred to 
waves and he total electrostatic energy is built only by neutrahzation effects. 

The problem finally amounts to making a correct energy conservation estimate in 
a material medium which has become inhomogeneous because of beam injection. 
Numerical experiments, from the properties of the scheme we have proposed, have 
shown good conservation of energy. 
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